Mapping neuronal fiber crossings in the human brain
نویسندگان
چکیده
Obtaining information about the anatomical connectivity of the human brain, noninvasively, is a difficult challenge facing neuroscientists. The adult human brain contains tens of billions of neuronal cells, each with multiple cell contacts that form a complex web. Moreover, higher-order structures, termed neural tracts or fiber bundles, form a complicated 3D network within and connecting different brain regions. The distinct connectivity pattern of a given brain region determines how it processes information and functions. Being able to map these complex neural patterns in vivo is essential for understanding the fundamental basis of many developmental disorders as well as defining how the brain’s structure relates to its function. Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a unique, noninvasive technique capable of quantifying the flow of water molecules in biological tissues such as the human brain.1 The success of DW-MRI comes from its unique capability to accurately describe the geometry of the underlying tissue microstructure as it constrains diffusion. From the raw DW images, diffusion tensor imaging (DTI)2 models the 3D movement of water molecules and has proved to be extremely useful in reconstructing the principal diffusion orientation needed to obtain fiber bundles and in the study of fiber-bundle connectivity in both normal and pathological brain tissues. However, DTI is most notably limited in regions of complex fiber crossings. This becomes a significant constraint when trying to map areas of the brain with complex internal structures (see Figure 1). The limitation is an important one, since the resolution of DTI images is between 1 and 27mm3, while the physical diameter of fibers ranges between 1 and 30μm. Overcoming the limitations of the DTI model and recovering fiber-crossing information is essential for constructing highresolution maps of the human brain. To do so, high angular resolution diffusion imaging (HARDI) reconstruction techniques3 have been used to measure DW images along several direcFigure 1. Processing high angular resolution diffusion imaging (HARDI) from local estimations of water molecule diffusion phenomena to the segmentation and fiber tractography used to recover complex fiber-crossing configurations.
منابع مشابه
The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملBrain white matter fiber estimation and tractography using Q-ball imaging and Bayesian MODEL.
Diffusion tensor imaging allows for the non-invasive in vivo mapping of the brain tractography. However, fiber bundles have complex structures such as fiber crossings, fiber branchings and fibers with large curvatures that tensor imaging (DTI) cannot accurately handle. This study presents a novel brain white matter tractography method using Q-ball imaging as the data source instead of DTI, beca...
متن کاملA multiple streamline approach to high angular resolution diffusion tractography.
Diffusion-weighted magnetic resonance imaging has the ability to map neuronal architecture by estimating the 3D diffusion displacement within fibrous brain structures. This approach has non-invasively been demonstrated in the human brain with diffusion tensor tractography. Despite its valuable application in neuroscience and clinical studies however, it faces an inherent limit in mapping fiber ...
متن کاملMapping the orientation of intravoxel crossing fibers based on the phase information of diffusion circular spectrum.
A new method is presented to map the orientation of intravoxel crossing fibers by using the phase of the diffusion circular spectrum harmonics. In a previous study [Zhan, W., Gu, H., Xu, S., Silbersweig, D.A., Stern, E., Yang, Y., 2003. Circular spectrum mapping for intravoxel fiber structures based on high angular resolution apparent diffusion coefficients. Magn. Reson. Med. 49, 1077-1088], we...
متن کاملNeuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008